

Oneida County, NY

Chasing Wet Weather and Cost Savings All the Way to Compliance

* ONE DA COUNTR * 1798 NEW YORK

Dan Davis and Diane Nascimento

January 27 | 2015

Outline

- Background
- Site Constraints
- Alternatives Considered

- What is Chemically Enhanced Primary Treatment (CEPT)
- What is High Rate Disinfection (HRD)
- Bench Testing Results
- Schedule

Project Background

be the second se

- Oneida Regional WPCP:
 - 14 Towns/Villages (Sanitary Sewage)
 - City of Utica (Combined Sewage)
- Consent Order SSO at Sauquoit Creek Pump Station (SCPS)
 - Consent Order in 2007 ; Compliance by 2021
- City of Utica LTCP to mitigate CSO
 - Will result in increased wet weather flows to WPCP
- Industrial development

Oneida WPCP - Existing

Existing Flows

- SPDES permit requires:
 - Minimum capacity of 53 mgd during winter (November May)
 - Minimum capacity of 48 mgd during summer (June October)
- Current operating procedure is to limit peak flow to 53 mgd due to hydraulic restrictions

Projected Peak Flows

Flow source	Existing conditions (mgd)	Future conditions (mgd)
SCPS Basin	15	35
City of Utica	28	49
Other Basins	12	18
Microchip Plant and Spin- Offs	0	9
Total at WPCP	55	111

WPCP Expansion – Split Flow Concept

- Easy to separate combined and sanitary flows at the head of the plant (yard piping modifications)
- During wet weather, combined flows through one train; sanitary flows through another train
- Combined flows receive primary settling and disinfection to comply with EPA CSO regulations
- Sanitary flows receive secondary treatment
- Capacity of secondary treatment system always maximized (65 mgd)

Split Flow Concept – Dry Weather

Treated discharge to river

Split Flow Concept – Wet Weather

Treated discharge to river

Split Flow Concept

- Advantages:
 - Screening and grit removal for 100% of flows reaching the WPCP
 - Primary settling for all flows
 - Primary settling and disinfection for all CSO flow
 - Secondary treatment for all sanitary flow
 - Maximize capacity of secondary treatment system
 - Minimize amount of new tanks and equipment required
 - Lower cost than conventional plant expansion or other wet weather technologies
 - City of Utica and County in compliance with regulations and Consent Order

Split Flow Concept - Constraint

- PST Area Site Constraint
 - SOR with largest tanks > Ten State Standards SOR Criteria
 - CSO: Average SOR 1,052 gal/sf-d > 1,000 gal/sf-d
 - Sanitary: Peak SOR 2,296 gal/sf-d > 2,000 gal/sf-d
- PST Options
 - Conventional with Waiver from NYSDEC on SORs
 - Chemically Enhanced Primary Treatment for CSO flows

PST Layout Alt 1 - Conventional

PST Layout Alt 2 - CEPT

- Hydraulic Loading Criteria meets Ten State Standards
- Wet Weather 1 Combined Sewer Tank with CEPT
- Wet Weather 3 Sanitary Tanks

UTICA COMBINED SEWER FLOWS

To HRD

Chemically Enhanced Primary Treatment (CEPT)

Chemically Enhanced Primary Treatment (CEPT)

- Enhanced performance through chemical addition
 - Convert slow settling and colloidal solids into rapidly settleable solids
 - Allows for much higher loading than traditional primary treatment
- Two-step chemical addition process
 - Metal coagulant neutralizes particle charge
 - Polymer flocculant aggregates coagulated particles

Objective is to create a floc like...

This:

Flocculated primary influent

Not this:

Normal primary influent

High-Rate Disinfection (HRD)

High-Rate Disinfection (HRD)

- Bacteria reductions achieved at detention times less than conventional 15-30 minutes
- HRD detention time can be as low as ~ 5 minutes
- High intensity, rapid mix for instantaneous chlorine dispersion
- Typically higher doses of disinfectant
- Develop dose-kill relationship

CEPT and HRD Projects

Chemically Enhanced Primary Treatment (CEPT)

- Where else is CEPT applied
 - Cleveland, OH (+HRD)
 - Hartford, CT (+HRD)
 - Portand, OR
 - Seattle, WA

NEORSD CEPT Facility Size Comparison

- Southerly PST No. 18 Demo 70 mgd
- Westerly CSTOF Tablin And 18 mgd
- Easterly Pilot 100 gpm

Westerly CSOTF Tank A a a second to be

Easterly Pilot Tank

Southerly – Average TSS

Southerly – Pushing the limits, but not really

Pilot HRD Tank

Southerly – Disinfection Performance

Southerly – Disinfection Performance

Contact Time (minutes)

Oneida Bench Testing

Calendar of Events Captured

		2014														
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec				
Oneid a 6 events								•		•						

- Bench scale Jar testing
- Storm variations
 - Range in storm types and influent conditions

Storms Sampled

variability

Event	Date	Peak Intensity	Duration of Peak Intensity	Cumulative Rain Volume during Event
		[in./hr]	[min]	[in.]
Event 1	7/29/14	0.00	60	0
Event 2	8/3/14 - 8/4/14	0.45	60	1.03
Event 3	8/12/14-8/13/ 14	0.38	60	1.29
Event 4	8/21/14	0.05	60	0.18
Event 5	9/2/14	0.71	60	1.60
Event 6	10/15/14 - 10/16/14	0.86	60	3.25

Example storm chasing hydrograph

Why jar testing?

- Simulates coagulation & flocculation very well
- Used to find most effective coagulant and flocculant
- Diagnose performance issues ... on the fly

Jar Testing

Influent wet weather characterization

Jar Testing – CEPT

Coagulant/Flocculent Dosage								
		Background	Jar 1	Jar 2	Jar 3	Jar 4		
	lar Name		FE 35/4818	FE 35/4818	FE 35/4818	FE 35/4818		
		\leq	0.5	1.0	1.5	2.0		
FeCl	₃ [mg/L FeCl₃]:		35.00	35.00	35.00	35.00		
Al ₂ (SO ₄) ₃ [m	g/L Al 2(SO4)3]:	>						
Kemira 4818(-	-) [mg/L Neat]:	\searrow	0.50	1.00	1.50	2.00		
Post-Flocculation Set	ttling	Turbidity [NTU]						
Mode	Time [min]	Background	Jar 1	Jar 2	Jar 3	Jar 4		
Raw Sample:	0.0	263	263	263	263	263		
Settling Time 1:	2.0	\geq	15	8	9	11		
Settling Time 2:	5.0	\geq	9	4	7	8		
Post-Rip Settling Time 1:	2.0	>	19	5	7	12		
Post-Rip Settling Time 2:		\geq						

Jar Testing – CEPT

Optimal coagulants and flocculants

Coagulant	Optimal Dose		Flocculant
Ferric Chloride, mg	35 - 40		
FeCl ₃ /L			Nalco 7766/7768
Alum, mg Al2SO4/L	20 - 30		
			Ashland 3040
PAX XL 1900, ug	10 - 12		
PAX/L			Kemira 4818/4518
DelPAC 2020, ug/	12 - 15		
DelPac/L		1-	

 No issues with Alkalinity or pH

Optimal Dose,

mg/L active

2

1.5 - 2

1 - 1.5

Disinfection – Jar testResults for Primary Effluent

Disinfection – Jar testResults for CEPT

Disinfection – Jar test

- Conclusions
 - CEPT target dose 6 mg/L achieves 200 instantaneous
 - PE target dose 10 mg/L achieves 200 instantaneous
 - Target 10 min contact time
 - Work with the regulatory agency on ultimate requirements
 Bacteria Dose Response Chlorine >=

Schedule

Schedule

- WPCP Expansion Design complete by 2016
- WPCP Construction complete by 2021 per Consent Order

Acknowledgements

Steven Devan, P.E.

Commissioner Oneida County, New York Department of Water Quality and Water Pollution Control

OBRIENSGERE Amy Mowers

Lauren Pepe, Colin O'Brien

Questions?

Bullpen

Brown and Caldwell

Split Flow Concept

Schedule

	2013					2014				2015				2016				20)17		2018				2019					20	20		2021			
Project Component	1	2	3	4	1	2	2 3	4	1	2	2 3	4	1	2	2 3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
SCPS and Forcemain Design																																				
SCPS and Forcemain Construction																																				
WPCP Solids Handling Design																																				
WPCP Solids Handling Construction																																				
WPCP Process Upgrades Design																																				
WPCP Process Upgrades Construction																																				