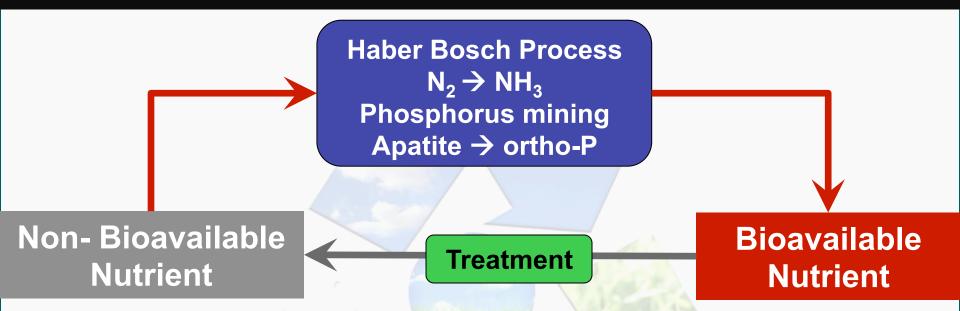
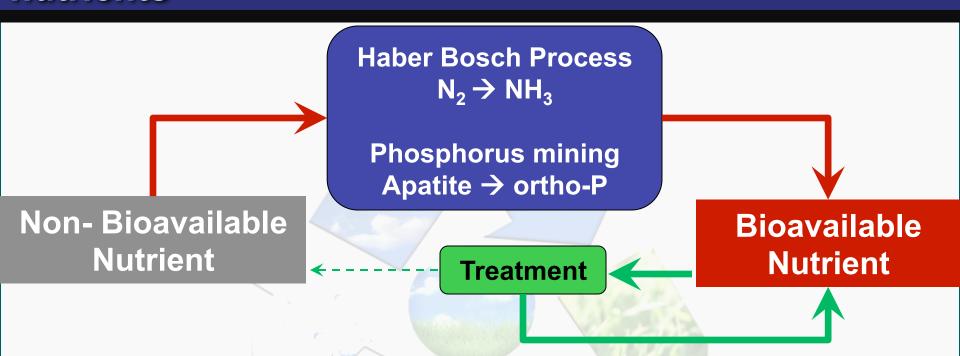
Extractive Nutrient Recovery as a Sustainable Nutrient Control Alternative

Wendell O. Khunjar, PhD Hazen and Sawyer

Acknowledgments


- Joe Rohrbacher, PE Hazen and Sawyer
- Vivi Nguyen Hazen and Sawyer
- Paul Pitt, PhD PE Hazen and Sawyer
- Chirag Mehta, PhD University of Queensland, Australia
- Damien Batstone, PhD University of Queensland, Australia
- Tim Muster, PhD CSIRO
- Stewart Burns, PhD CSIRO
- Ron Alexander R. Alexander Associates Inc
- Glen Daigger, PhD, PE, BCEE CH2MHill
- Todd Williams, PE, BCEE CH2MHill

Nutrient usage cycle currently assumes an unlimited supply of resources and energy


- Nitrogen gas is a renewable resource but is not readily available for plant growth
 - Energy required for engineered N cycle 12.9 to 14.3 kWh/kg N
- Phosphorus is a NON-renewable resource
 - Phosphorus resources are declining both in quality and accessibility

Nutrient recovery facilitates the recycling of reactive nutrients

- For nutrient recovery to be a viable option,
 - The process must have equivalent treatment efficiency as conventional treatment
 - The process must be cost-effective
 - The process must be simple to operate and maintain
 - There must be a market for the recovered nutrient product(s)

Challenges revolve around technical, economic and regulatory limitations

Technical

- Technologies are unknown entities.
- Insufficient time and staff to review technologies
- Insufficient data to evaluate technology performance
- Insufficient experience in operating technology
- Unknown maintenance requirements and long-term operational viability

Economic

- Insufficient and/or competing needs for funds
- Unknowns regarding cost of implementation, operating costs, etc.
- Uncertainty with respect to future demand for fertilizer product.
- Competition for product if many utilities adopt the technology

Regulatory

- Lack of regulatory drivers i.e., no effluent nutrient limits.
- Lack of public acceptance

From a technological perspective, a three step framework may be appropriate

- Accumulation step to increase nutrient content
 - N > 1000 mg N/L and P > 100 mg P/L
- Release step to generate low flow and high nutrient stream
- Extraction step produces high nutrient content product

There are multiple options for each step of extractive recovery

Accumulation

Release

Extraction

- Enhanced biological phosphorus removal (EBPR)
- Algae
- Purple non-sulfur bacteria
- Adsorption/lon exchange
- Chemical precipitation
- NF/RO

- Anaerobic digestion
- Aerobic digestion
- Thermolysis
- WAS release
- Sonication
- Microwave
- Chemical extraction

- Chemical crystallization
- **Electrodialysis**
- Gas permeable membrane and absorption
- Gas stripping
 - Solvent extraction

- Not all systems require all three components
- Can optimize each option separately
- Can also stage implementation

Our technology matrix summarizes nutrient recovery state of science

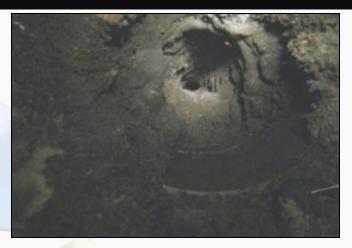
Durham AWWTP Gold ar/Clover Bar	Tigard, OR Edmonton, AB	5/1/2009 5/1/2007	Scale Full	Size of Plant (MGD)	Feed flow to Pearl® (MGD)	1	s of sidestream ow [NH ₃ -N] (mg/L)	% PO ₄ -P	% NH ₃ -N	Product	Contact						
Durham AWWTP Gold ar/Clover	Tigard, OR	5/1/2009		(MGD)	Pearl® (MGD)	[PO ₄ -P] (mg/L)		% PO ₄ -P	% NH ₃ -N		Contact						
AWWTP Gold ar/Clover	Edmonton,		Full	25	0.125				1	recovered (T/yr)	1						
AWWTP Gold ar/Clover	Edmonton,		Full	25	0.125						Nate Cullen						
Gold ar/Clover	_	5/1/2007			1	400	1250	90	18	520	503-547-8176						
ar/Clover	_	5/1/2007									cullenn@cleanwaterservices.org						
	_	5/1/2007									Vince Corkery						
Bar	Ab		Full	80	0.132	160	650	85	15	Demo plant	780-969-8429						
	Rar										vcorkery@epcor.ca						
											Bill Balzer						
ansemond WWTP	Suffolk, VA	5/1/2010	Full	20	0.104	450	650	90	30	602	757-638-7361						
VVVVIP											bbalzer@hrsd.com						
											Steve Douglas						
ork WWTP	York, PA	6/1/2010	Full	20	0.125	~300	700-800	90	~20	365	717-845-2794						
											sdouglas@yorkcity.org						
											Nate Cullen						
Rock Creek F AWWTP	Hillsboro, OR	1/1/2012	Full	35	0.701	132.5	268	83	19 930	930	503-547-8176						
											Steve Reusser						
ne Springs WWTP	Madison, WI	Spring 2013	Full								608-222-1201 ext. 263						
****											stever@madsewer.org						
	011										Joe Zimmer						
I.M. Weir WWTP	Saskatoon, SK	Fall 2012	Full								360-975-2330						
											Joe.zimmer@saskatoon.ca						
	United										Pete Pearce						
ough STW	United Kingdom	Fall 2012	Full								(01144) 774-764-0814						
											Pete.pearce@thameswater.co						
Courthorly	Columbus										Stacia Eckenwiler						
Southerly WWTP	Columbus, OH	Mar-12	Pilot								614-645-0268						
											skeckenwiler@columbus.gov						

_

Consider a common scenario in which enhanced biological phosphorus removal is applied						
	Nutrient recovery (% recovery efficiency)					
		N	Р	K	(% wt nutrient	
			V		Sludge	

Accumulation	EBPR	-	√ (15-50%)	-	Sludge (5- 7% P)
Release	Anaerobic digestion	V	V	V	Biosolids

Mg-Struvite (12% P, 5% N), **Extraction** Crystallization K-struvite, (> 90%) Fe or Ca phosphate

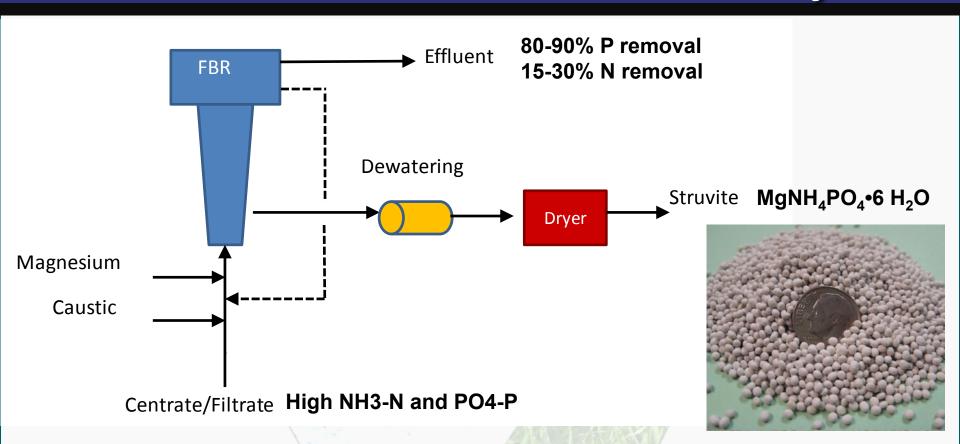


Nuisance struvite formation is commonly observed 11

- Struvite = Mg + NH₄ + PO₄
 - NH₄ & PO₄ released in digestion
 - Typically Mg limited
 - Mg addition for odor control (i.e.
 Mg(OH)₂) can promote struvite formation

NYC Newtown Creek WPCP

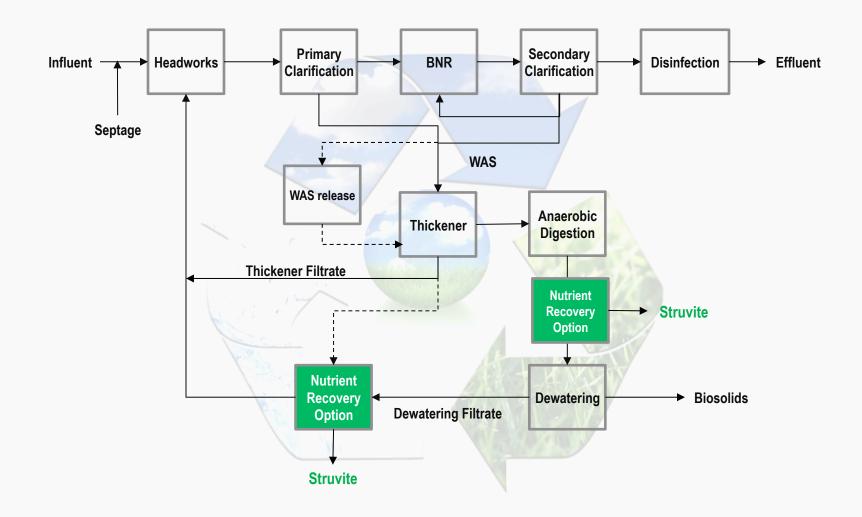
Miami Dade SDWRF



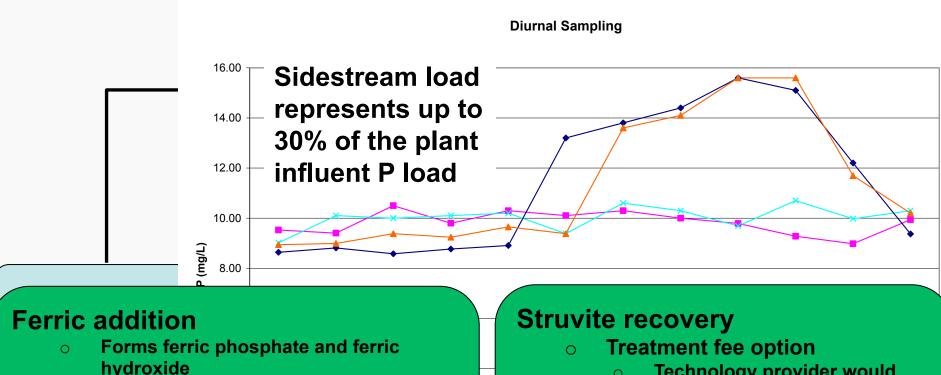
Intentional struvite recovery helps minimize nuisance struvite formation and reduce P recycle

- Fluidized bed reactor or CSTR used for struvite recovery
- High quality, slow release fertilizer revenue offsets costs
- Reduction in ferric/alum payback on capital

There are several commercial options for struvite recovery


Name of Technology	Pearl ®	Multiform Harvest™	NuReSys™	Phospaq™	Crystalactor™	Airprex™
Type of reactor	upflow fluidized bed	upflow fluidized bed	CSTR	CSTR with diffused air	upflow fluidized bed	CSTR with diffused air
Name of product recovered	Crystal Green ®	struvite fertilizer	BioStru®	Struvite fertilizer	Struvite, Calcium- phosphate, Magnesium-phosphate	Struvite fertilizer
% Efficiency of recovery from sidestream	80-90% P 10-40% NH3-N	80-90% P 10-40% NH3-N	>85% P 5-20% N	80% P 10-40% NH3-N	85-95% P for struvite 10-40% NH3-N > 90% P for calcium phosphate	80-90% P 10-40% NH3-N
# of full-scale installations	8	2	7	3	4	3

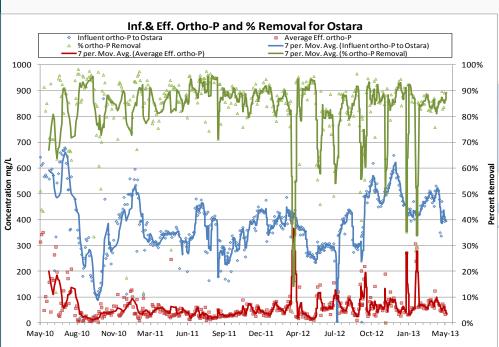
Enhanced biological phosphorus removal, anaerobic digestion & nutrient recovery

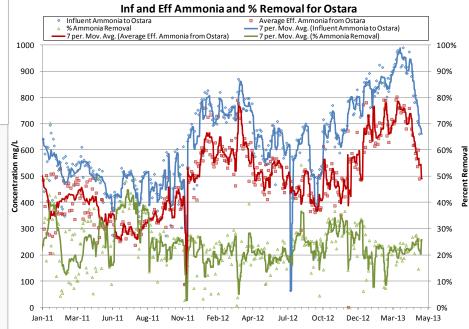


Plant A is a 30 MGD facility that employs a 5-stage BNR configuration for N and P removal

- Non-proprietary
- Traditionally used for controlling sidestream P at this plant
- High O&M requirement

- Technology provider would assume all maintenance of the facilities
- Capital purchase option
 - Plant A purchases equipment and receives annual payments from Technology provider




Extractive nutrient recovery option was more cost effective than ferric addition option

Orthophosphate and ammonia removal have been consistent throughout operation

 Ammonia removal approaches 25-30% Ortho-P removal approaches 85%

Product

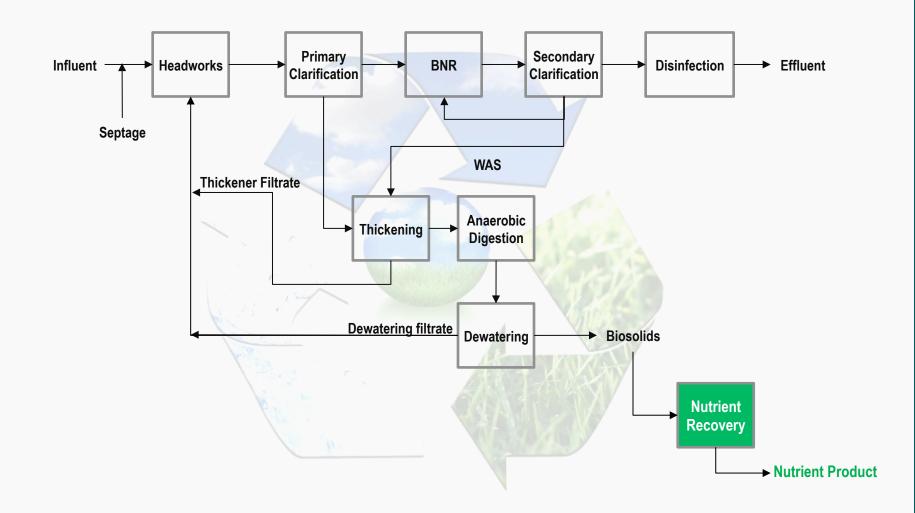
What about if we use chemical precipitation for mainstream P removal?

N

Chemical

liquid extraction,

ion exchange

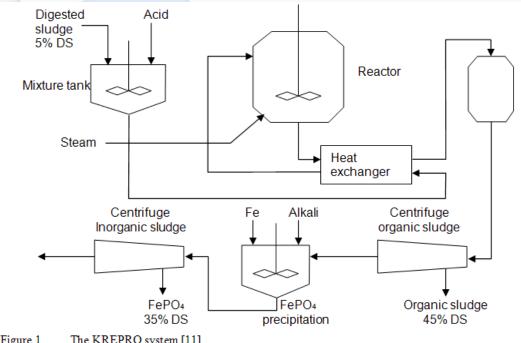

Accumulation	(Precipitation)	V	(> 90 %)	-	Sludge	
Release	Anaerobic digestion	V	-	√	Biosolids	
Release via Anaerobic digestion solubilizes limited amount of P						
Extraction	Acidification or bioleaching followed by crystallization,	√	V	√	Struvite; diammonium sulfate (DAS), iron phosphate, phosphoric acid, calcium phosphate, biosolids	

Nutrient recovery

(% recovery efficiency)

K

Chemical precipitation, anaerobic digestion and nutrient recovery



There are options to allow us to recover nutrients from sludge

Name of Process	Seaborne	Krepro	PHOXNAN
Product recovered	struvite; diammonium sulfate (DAS)	iron phosphate as a fertilizer	phosphoric acid
Process feedstock	sludge	sludge	sludge

- One full-scale installation of Krepro in Sweden
- Regulatory mandate for recycling P is needed to drive implementation of these technologies

The KREPRO system [11].

What about if we use have thermochemical

stabilization (i.e., incineration)?					
	Nutrient recovery				

	Nutrient recor	
N	Р	

cy) K

Product

Chemical (> 90 %)

No release exists so P is bound into ash

Biological or

110 10104	oo oxioto		Juliu IIII	u 0

ption 1 -	Enhanced WAS	J

Release and Lysis and **Extraction** crystallization Acidification of ash Option 2 followed by

Sludge

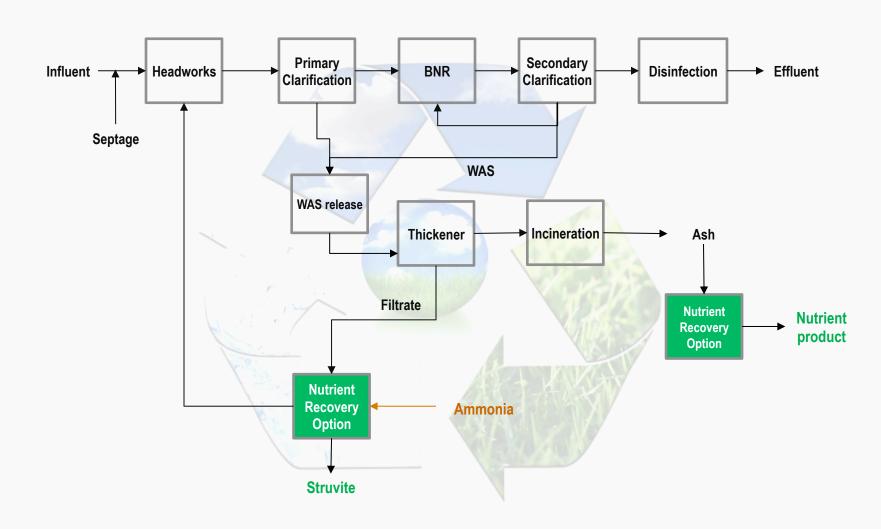
Struvite; diammonium sulfate (DAS), iron phosphate,

phosphoric acid, calcium

phosphate

Sludge

Release and crystallization, liquid extraction, ion exchange



Extraction

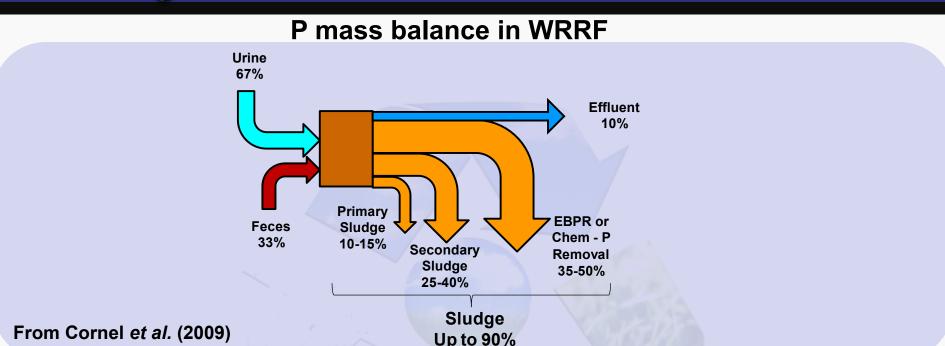
Accumulation

Enhanced biological phosphorus removal, WAS release & nutrient recovery

There are options to allow us to recover nutrients from ash/sludge

Name of Process	SEPHOS	BioCon®	PASH
Product recovered	aluminum phoshate or calcium phosphate (advanced SEPHOS)	phosphoric acid	struvite or calcium phosphate
Process feedstock	sewage sludge ash	sewage sludge ash	sewage sludge ash

- Post-processing to remove heavy metals may also be required
- Few full-scale installations are present
- Regulatory mandate for recycling P is needed to drive implementation of these technologies
- Ash can also be considered as direct fertilizer amendment
 - Consideration needs to be given to the heavy metal content



Nutrient recovery is another strategy for removing P from WRRF

Different scenarios

- No nutrient limits
- Nutrient limits on liquid effluent
- Nutrient limits on liquid effluent and biosolids

Quantifying other benefits (cost and non-cost) can help make the case for nutrient recovery

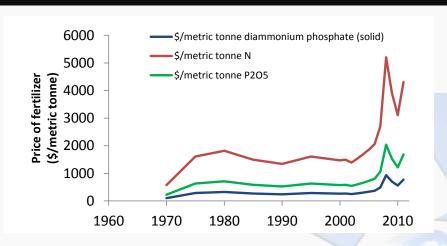
- Struvite recovery can:
 - Provide factor of safety associated with Bio-P
 - Minimizes impact of sidestream return

- Offsets due to reduction in aeration and supplemental carbon
- Reduction in sludge quantity and hauling costs

- If land application P index limited, removing P in the form of struvite will shift N:P ratio
- If more P is appreciated, selectively precipitating P into biosolids will increase biosolids P content
- Improve sludge dewaterability
 - Result in higher sludge cake %TS
 - Reduce polymer demand

Recovery of a high demand chemical nutrient product is the goal

- Approximately 85% of all nutrient products used in developed countries is related to agriculture
- Focus on producing products for the agricultural sector
 - Niche within specialty agriculture and ornamental markets


Common Name	Chemical Formula	Product Form
Magnesium Struvite	NH4MgPO4·6H2O	Solid
Hydroxyapatite	(Ca5(PO4)3(OH)	Solid
Vivianite	Fe3(PO4)2·8H2O	Solid
Phosphoric acid	H3PO4	Liquid
Ammonium nitrate	NH4NO3	Liquid or Solid
Ammonium sulfate	(NH4)2SO4	Liquid or Solid

Magnesium struvite is the most commonly encountered product

- Closest analogues are mono and diammonium phosphate
- Based on historical pricing, can expect Mg-struvite value to range from \$200 to \$600/metric tonne

Characteristic	Magnesium struvite	Monoammonium phosphate	Diammonium phosphate		
Chemical formula	MgNH ₄ PO ₄ -6H ₂ O	NH ₄ H ₂ PO ₄	$(NH_4)_2HPO_4$		
Average price/metric tonne	\$200 - \$600	\$570 - \$615	\$420 - \$680		
Grade (N-P-K)	5-29-0	11-52-0	18-46-0		
Water solubility at 20 °C	Insoluble - 0.2 g/L	328 - 370 g/L	588 g/L		
Application description	Spread on soil	Normally spread of mixed in soil	Normally spread of mixed in soil		
Typical application rates*	255 lb/A	142 lb/A	160 lb/A		

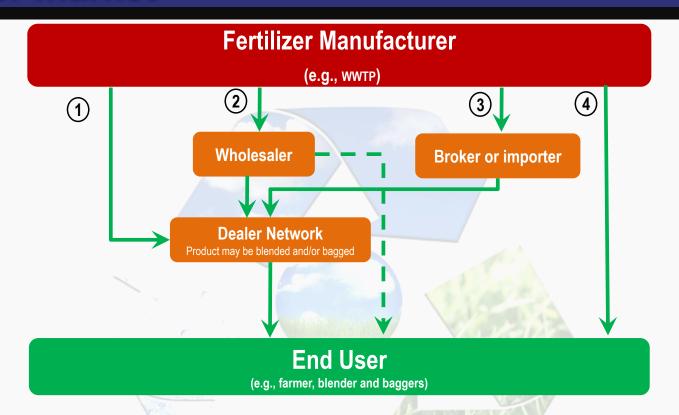


Region specific needs also play a role in the overall demand for recovered nutrient products

- Overall national fertilizer demand has been relatively steady over the past 10 yrs
- If we look a little deeper....
- Demand in specific regions has fluctuated
 - see WERF report for more details on region specific demand data

The specialty agriculture and ornamental markets are receptive to WRRF products

- Specialty agriculture and ornamental markets
 - 325,000 metric tonne P₂O₅/ year,
 - 110,000 metric tonne TN/year
 - Represents 1 to 5% of total agricultural demand
- WWT industry can potentially meet these demands (optimistic projections)
 - Between 30 and 100% of the specialty and ornamental P₂O₅ fertilizer demand (as struvite)
 - Between 30 and 194% of the specialty and ornamental N fertilizer demand (as ammonium sulfate solution)



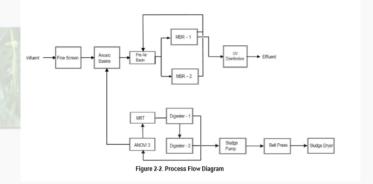
There are multiple entry points for the nutrient fertilizer market

- Multiple points of entry into the secondary market
 - Most technology providers for struvite production facilitate interaction with the market
 - Facility has the choice of entering the market directly

What are the economics associated with implementing struvite recovery at WRRFs?

Objective 2 – Provide guidance on the implementation of resource recovery technologies at WWTP

Case studies of full-scale facilities also developed

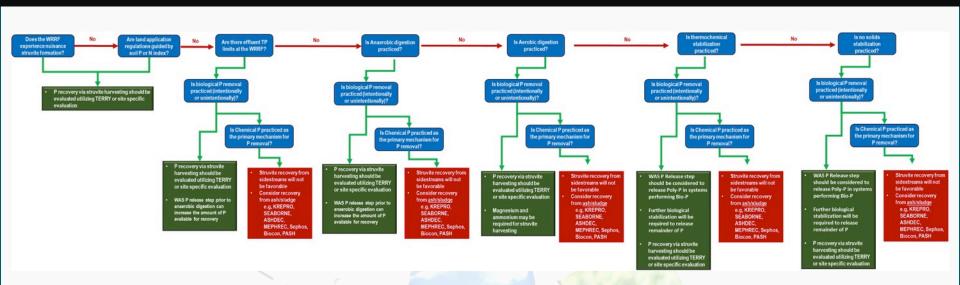

Developed case studies in 3 categories

- Category 1 Currently operating or constructing struvite harvesting
- Category 2 Performed desktop analyses and/or pilot
- Category 3 No evaluation but may have piloted

Each case study describes:

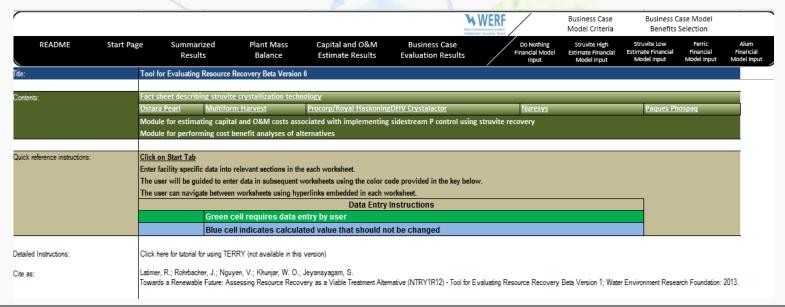
- Nutrient limits,
- Plant configuration,
- Challenges faced,
- Drivers for nutrient recovery,
- Economics associated with struvite harvesting,
- Lessons learned where applicable

Plant Designation	Plant 1				
Location	Virginia, USA				
Current Nutrient limits (mg/L)	TN - 8.0 mg/L AA TP - 2.0 mg/L AA TP - 2.0 mg/L AA TP - 2.0 mg/L AA These are treatment goals, the utility has a permit for combined effluent from 7 plants discharging in the James River basin.				
Emerging Nutrient limits (mg/L)	Expected 2017 TN reduction to 5.0 mg/L and TP reduction to 1.0 mg/L. Pl to treat with additional supplemental carbon and ferric chloride if needed.				
BNR configuration	5-stage BNR				
Solids management configuration	Primary sludge + GBT co-thickened. Thickened sludge to anaerobic digesters then centrifuged. Cake is hauled and incinerated.				
<u>Biosolids</u> disposal method	Biosolids transported to another plant within utility for incineration				
Mainstream Design flow (MGD)	30				
Mainstream current operation flow (MGD)	18				
Minimum operating temperature (°C)	12				
Effluent nutrient concentrations (June 2011 to February 2013)	TP - 1.5 mg/L TN - 6.5 mg/L (includes periods with 3 and 5 stage BNR)				
Sidestream flow (MGD)	0.1				
Sidestream nitrogen concentration (mg/L N)	Before implementation of nutrient recovery: 576 After implementation of nutrient recovery: 448				
Sidestream ortho-phosphorus concentration (mg/L P)	Before implementation of nutrient recovery: 351 After implementation of nutrient recovery: 54				



Flowsheet has been developed to aid decision making process

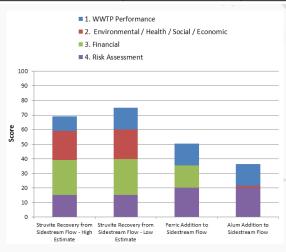
 Preliminary multi-criteria analyses can be performed using the Tool for Evaluating Resource RecoverY

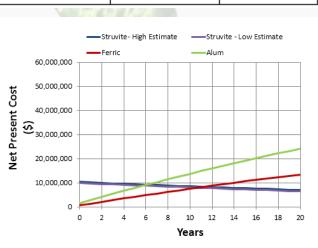


Tool for Evaluating Resource RecoverY developed to facilitate preliminary evaluation

- Compare struvite crystallization with precipitation with coagulant (i.e., alum or ferric)
- Different scenarios evaluated in current version
 - Known sidestream characteristics
 - Unknown sidestream characteristics; Anaerobic digestion
 - Unknown sidestream characteristics; Anaerobic digestion & imported sludge
 - Unknown sidestream characteristics; Aerobic digestion
 - Unknown sidestream characteristics; Aerobic digestion & imported sludge
 - Unknown sidestream characteristics; No stabilization

Cost benefit analyses model takes into account non-financial criteria


Criterion No.	Criterion	Description of Criterion	Criterion Weight (%) (Sum for all criteria must equal 100%)		
1. WWTP P	1. WWTP Performance				
1a.	Reduce nuisance precipitate formation	The alternative will/will not reduce the formation of struvite in the sludge cake	5.00%		
1Ь.	Remove phosphorus in the sidestream versus in the mainstream	The average pounds of Phosphorus removed per day in the sidestream	5.00%		
10.	Improve reliability for meeting effluent total phosphorus limits by reducing EBPR upsets from sidestream load	Will biological phosphorus removal upset frequency be reduced?	5.00%		
2. Environ	mental / Health / Social / Economic				
2a.	Perform nutrient recycling	Average pounds of struvite recovered per day	5.00%		
2Ь.	Reduce amount of chemical sludge produced and disposed	Pounds of sludge produced and disposed per day on average	5.00%		
2e.	Reduce supplemental carbon demand	Quantity of supplemental carbon use avoided (lb/day)	5.00%		
2d.	Alternative is more acceptable to the public than the baseline	If the Alternative recovers and reuses nutrients, then the project is more acceptable to the public that is the baseline	5.00%		
3. Financi	a l				
3a.	Net Present Value of Alternative	Change in Present value of revenues minus present value of costs due to Alternative	35.0%		
3Ь.	Payback Period	Number of Years until the Capital or Initial Cost of the Alternative is Paid Off with Revenue from the Alternative	10.00%		
4. Risk Ass	essment				
4a.	Technological Track Record	Reflects the degree to which the Alternative's technology has a successful track record or the technology does not require specialized training to operate.	5.00%		
4Ь.	Sufficient Information for Proper Assessment	Reflects the quality of the information used to evaluate this alternative.	5.00%		
4c.	Additional Building Footprint Required	Will new building space need to be constructed?	5.00%		
4d.	Manpower Hours and Skill Required	Reflects the degree to which the Alternative requires significant manpower hours and skill.	5.00%		



TERRY output allows you to estimate capital, O&M and rank alternatives based on non-cost critieria

Option	BCE Score		Capital Cost (\$)	Net Present Cost (20 year) (\$)	Struvite Recovered (lb/day)	ue of Struvite Recovered (\$/year)
Struvite Recovery from Sidestream Flow - High Estimate	69.1	\$	10,630,000	\$ (7,240,000)	6536	\$ 358,000
Struvite Recovery from Sidestream Flow - Low Estimate	74.9	\$	10,200,000	\$ (6,720,000)	6536	\$ 358,000
Ferric Addition to Sidestream Flow	50.4	\$	-	\$ (13,000,000)		
Alum Addition to Sidestream Flow	36.3	65	400,000	\$ (23,270,000)		

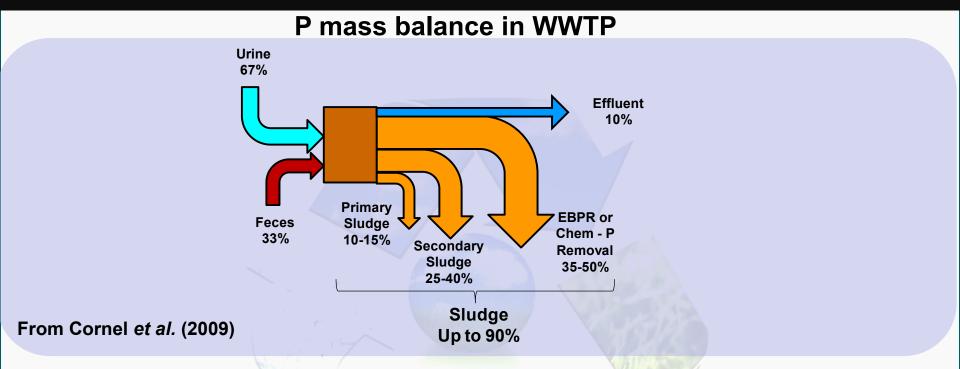
TERRY status and implications

- User manual and tutorial under development
- Beta-testing with numerous facilities
- Who do we envision using this tool?
 - Utility managers, research and development personnel
 - Consultants
 - Regulators
- Future applications
 - Incorporate regulatory, economic and technical constraints
 - Estimate the value of benefits that can not be quantified currently. E.g. Environmental benefits

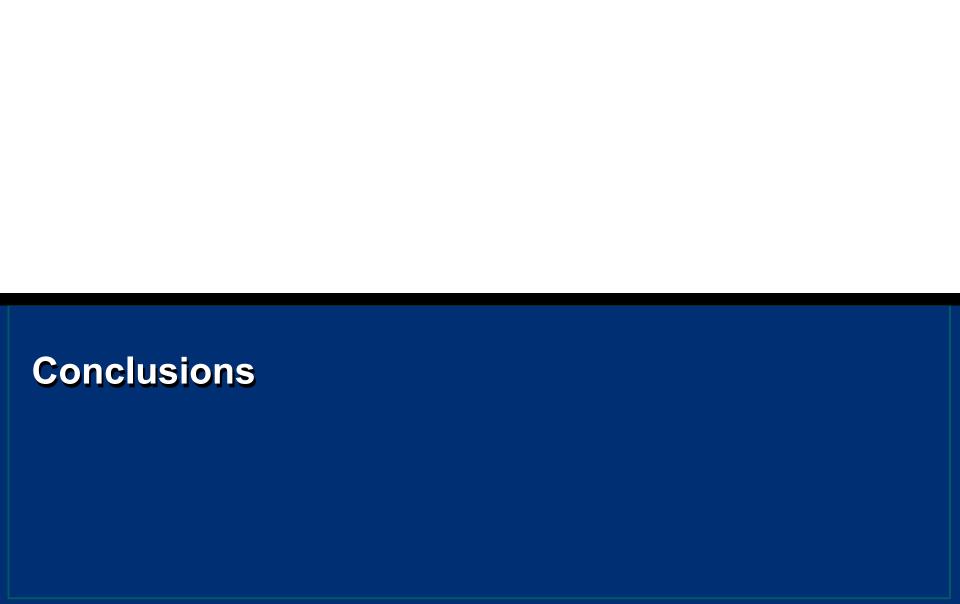
Objective 3 - Experimentally evaluate nutrient (focus on P) recovery technologies

Two projects underway

- Project 1 Optimize phosphorus release and availability during and after anaerobic digestion
 - Goal is to increase productivity of struvite recovery systems


- Project 2 Examine the benefits of P, N and K recovery via electrodialysis and its influence on sludge dewatering
 - Goal is to achieve simultaneous recovery of P, N, K and improve sludge dewaterability in Bio-P applications

Enhancing recovery potential with existing technology



	% P from influent			
Accumulation via EBPR	Up to 90			
Release via Anaerobic Digestion	Up to 60			
Recovery via crystallization	Up to 50			

Quantifying other benefits (cost and non-cost) can help make the case for nutrient recovery

- Struvite recovery can:
 - Provide factor of safety associated with Bio-P
 - Minimizes impact of sidestream return

- Offsets due to reduction in aeration and supplemental carbon
- Reduction in sludge quantity and hauling costs

- If land application P index limited, removing P in the form of struvite will shift N:P ratio
- If more P is appreciated, selectively precipitating P into biosolids will increase biosolids P content
- Improve sludge dewaterability
 - Result in higher sludge cake %TS
 - Reduce polymer demand

Questions and Contact Information

Wendell Khunjar Hazen and Sawyer, P.C. wkhunjar@hazenandsawyer.com

Ron Latimer
Hazen and Sawyer, P.C.

rlatimer@hazenandsawyer.com

Sam Jeyanayagam
CH2M HILL
Samuel.Jeyanayagam@ch2m.com

