Protecting Our Estuaries – Application of Permeable Reactive Barriers for Sustainable Nitrate Removal

NEWEA 2015 Annual Conference

Ed Sanderson, AICP, P.E.

Technical Session No. 1

January 26, 2014

Other Project Team Members:

Dave Young, P.E.

Cannon Silver, P.E.

Bob Schreiber, P.E.

Michaela Bogosh

Dwight Dunk

CDM Smith

Outline

- Permeable Reactive Barriers (PRBs) defined
- Case study for application in Falmouth, MA

Permeable Reactive Barriers

- In-situ treatment zone
 - Intercept and treat contaminated groundwater
- Iron based PRBs
 - From innovative to accepted
 - Traditionally used for:
 - Chlorinated solvents
 - Metals
 - Radionuclides
- Biowalls
- Other media/construction types

PRBs as a Sustainable Solution

- Perform under hydraulically passive means
- Groundwater is not removed or discharged
- Treatment material often consists of recycled media
 - Carbon sources
 - mulch
 - compost
 - sawdust
 - wheat straw
 - emulsified vegetable oil
- USEPA Green Remediation
 - Energy requirements
 - Air emissions
 - Material consumption and waste generation

PRBs for Nitrate Removal

- Focus on PRBs implemented for nitrate removal
 - 17 pilot scale and 10 full scale examples
 - 70 to 100% nitrate removal can be achieved
- Reactive media
 - Wood-based organic media for biological reduction,
 - Food-grade "emulsified" vegetable oil
- Depths
 - Typically 15 to 35' single pass method
 - Deeper with other techniques
 - Around 45' injection methods considered

PRB Media

Construction Techniques

Construction Techniques

Injection Wells

Typical PRB Design Considerations

- Hydrogeological
 - Understanding GW flow to intercept nitrate plume
- Nitrate concentration
 - Position PRB to target highest concentration
- Infrastructure and land use
 - Avoid buildings or utilities that cannot be moved
- Aquifer properties
 - Geochemistry; matching hydraulic conductivity
- PRB media thickness

Potential Downgradient Impacts

- Lessons learned from similar projects
 - Geochemical changes
 - Water quality impacts
 - Aesthetics
- Proper grading during construction

PRB Cost Drivers

- Construction
 - Construction technique
 - Depth of installation
 - Nature of the geologic materials present
 - Surface/subsurface obstructions (e.g., buildings and utilities)
 - Effectiveness of the media at treating the contaminants
- O&M
 - Effective lifespan of media
 - Long-term maintenance and monitoring

Falmouth, MA Case Study

Falmouth Case Study: Problem Statement

- Water quality issues in the estuaries along the south coast
- Plume from WWTP effluent in W. Falmouth Harbor

Project Goals

- 1. Confirm PRB technology is appropriate for nitrate removal
- Select the two best locations for demonstration projects

Site Selection and Prioritization

- Two areas of Town (W. Falmouth; South Coast)
- Watersheds to top subwatersheds
- Top subwatersheds to 18 potential PRB locations
- Discussions and site visits
- 10 potential PRB locations prioritized
- 3 sites identified for preliminary design

Screening Step 1

- Step 1 criteria (watersheds to top subwatersheds)
 - Land use or housing density
 - Proximity to existing West Falmouth WWTF plume
 - Vertical Extent of Nitrate Contaminated groundwater

High

Medium

Low

Existing Land Use Density

Nitrate Plume from WWTP

Screening Step 2

- Step 2 criteria (Top subwatersheds to potential PRB locations)
 - Property ownership
 - Availability of existing data and monitoring locations
 - Potential Funding/Collaboration

High

Medium

Low

Property Ownership

10 Potential PRB Locations

Screening Step 3

- Step 3 criteria (Prioritization of potential PRB locations)
 - Site accessibility
 - Applicability to other, future sites
 - Surficial geologic mapping (W. Falmouth)
 - Potential for utility conflicts
 - Ease of monitoring, existing wells and data
 - Permitting requirements
- Three sites Great Harbors, Seacoast Shores, West Falmouth Harbor

Nitrate Removal

Homes

Nitrate removal (pounds/year)

Length of PRB (feet)

South Coast			
Great Harbors	Seacoast Shores		
41	46		
300	350		
590	525		

West Falmouth Harbor					
1,600 - 2,250					
350					

Groundwater/Saltwater Interface

–Higher Ground=Deeper Interface———Lower Ground=Shallower Interface—— **PRB** looking southward Low Salinity [⊥] Interface High Salinity

Interface

Injection Well PRB for Nitrate Reduction

- Radius of influence
- Emulsified vegetable oil
 - Re-inject every 3-5 years
 - EOS 100 or equivalent
 - Proven for nitrate treatment
 - Fully fermentable
 - Longer retention time

- Examples of injection well method PRB for nitrate reduction
 - Perchlorate as a surrogate
 - Various feedlots in the Midwest and Northwest
- Downgradient impacts

Seacoast Shores

Typical PRB Injection Well Array

Groundwater Monitoring Program

Construction Method Costs (Millions)

	Great Harbors	Seacoast Shores	West Falmouth (shallow)	West Falmouth (deep)
Continuous One-Pass Trench Excavation	\$1.39	Not Applicable	\$1.05	Not Applicable
Traditional Supported Trench Excavation	\$1.32	\$1.33	\$0.89	Not Applicable
Caisson Installations	\$2.74	\$2.48	\$1.61	Not Applicable
Injection Wells	\$0.67	\$0.61	\$0.40	\$1.07

Next Steps

- Design/Permitting
- Seek funding
- Construction
- Continuous monitoring

Take Away

- PRBs have potential for application in Falmouth, MA to reduce nitrate to estuaries
- Need for long-term full scale installation data
- Prove to regulatory agencies that PRBs are a sustainable, feasible option
- Need to understand freshwater/saltwater interface to capture nitrogen; critical to PRB depth

Comments & Questions

Final Report can be found on Town website at:

http://www.falmouthmass.us/waterq/PRB %20executive%20summary.pdf

Extra Slides

PRB Design Resources

- Interstate Technology and Resource Council
 - Permeable Reactive Barriers:
 Lessons Leaned/New Directions
 (2005)
 - Permeable Reactive Barrier: technology Update (2011)
- USEPA
 - Permeable Reactive Barrier
 Technologies for Contaminant
 Remediation (1998)

Permeable Reactive Barrier: Technology Update

Summary of Previous Pilot Tests in Falmouth

- Two NITREXTM PRBs installed in Falmouth in 2005
 - Waquoit Bay (nitrate ~12 mg/L)
 - Childs River (nitrate ~31 mg/L)
 - Dimensions:
 - Length 40-65'
 - Width 6-12'
 - Depth 6'
 - Depth to groundwater: 1.5'
 - Close proximity to coastal estuarine environments

Results of Previous Pilot Tests in Falmouth

- Nitrate leaving the PRBs averaged <0.1 mg/L
- However, consequences of tidal water flowing through the top of the biowall include:
 - Driving plume flow path downward
 - Advection of sulfate into PRB, causing sulfate reduction and significant hydrogen sulfide production
 - Only partial denitrification of nitrate into nitrogen gas; rather formation of ammonium
 - Potential decreased longevity of biowall
- Proximity to surface caused iron-oxide staining of beach

Availability of existing data and monitoring locations

Nitrate Loading

- South Coast Annual Nitrate Loading (lbs N/year)
 - $(90\%)*(X)*(Y_1)*(365 days/yr)+(Y_2)*(Z)$
 - X: Total daily water usage for homes within potential capture zone, gal/day (values provided by CCC, calculated using MVP Model); wastewater from home is estimated to be 90% of water use
 - Y1: average nitrate concentration from septic system leaching fields
 - Y2: average nitrate concentration from lawn fertilization
 - 7: Number of homes
- West Falmouth Annual Nitrate Loading
 - Primarily dictated by GW flow and nitrate concentration in WWTF plume

Annual Nitrate Removal

Total # of homes	Site 1 Great Harbors	Site 2 Seacoast Shores	Site 5 West Falmouth - Shallow	Site 5 West Falmouth - Deep
Total # of homes	41	46	73	73
Total N loading along the length	363	418	1,967	2,808
Total N Removal by PRB	290	334	1,574	2,246
lbs Removed/linear foot	0.49	0.64	4.5	6.4

Groundwater Monitoring Program

- Goals
 - Meet regulatory requirements
 - Demonstrate PRB effectiveness
- Water quality parameters
- Number, location, and spacing of monitoring wells
- Sampling frequency

Permitting Requirements

- Order of Conditions from Falmouth Conservation Commission
- Annual Chapter 91 permit from the harbor master
- Underground injection control registration through MassDEP
- Other general and local permits

Potential Environmental Permitting Requirements

- Federal
- State
- Local

Injection Well Method – Demonstration Costs

	Great Harbors	Seacoast Shores	West Falmouth (shallow)	West Falmouth (deep)
Cost per linear foot of installation (\$/LF)	\$1,650	\$1,700	\$1,950	\$4,050
Cost per pounds N removed by PRB per year (\$/lbs N removed/yr)	\$3,350	\$2,700	\$450	\$650
Cost per home (\$/home)	\$24,000	\$20,000	Not Applicable	

