Advances in On-line Instrumentation for Wastewater Process Control

January 27, 2015

Acknowledgements

Sarah Galst, P.E. (Hazen and Sawyer)

Phill Yi, P.E. (Hazen and Sawyer)

Katya Bilyk, P.E. (Hazen and Sawyer)

Presentation Outline

1.Goals/Considerations

2.Background on Parameters of Interest and Measuring Techniques

3.Case Studies Utilizing Instrumentation and Models

Goals of Monitoring in WWTPs

- Better Understanding
- Advanced Warnings of Problems
- Better Effluent Quality
- Reduced Energy Use
- Reduced Chemical
 Consumption
- Simplifying Wastewater Treatment

Courtesy of New York Times

Courtesy of PolicyMed

Considerations (High-Level)

- How can this information be used?
- Are staff resources available to adequately maintain the sensors and review the data?
- If cost-savings is a goal, is the overall control strategy going to work?

Considerations (Detailed)

- Can the sensor monitor over the range/accuracy needed?
- How will the location of the sensor impact the measurement
- If a single sensor is "mission-critical", should there be redundancy (if so, how much)?

Parameters of Interest

Dissolved Oxygen

- Temperature
- pH/alkalinity
- Oxidation-Reduction Potential
- Total Suspended Solids
- Flow
- Ammonia
- Nitrate (NO_x-N)
- COD/BOD Surrogates
- Phosphorous

Conventional Parameters

"Advanced" Parameters

Dissolved Oxygen

- Amperometric Sensor
 - Low capital costs
 - Higher maintenance
 - Less reliable due to consumables
 - Higher absolute accuracy
- Optical Sensor
 - Higher capital costs (\$1 2K)
 - Lower maintenance
 - More reliable due to ease of maintenance
 - Lower absolute accuracy

Courtesy of Hach

Courtesy of InsiteIG

Oxidation Reduction Potential (ORP)

- Measurement of Oxidizing and Reducing Conditions
- Represents State of Process
- Inexpensive, lowmaintenance

Biochemical activity	Approximate ORP range
Carbon oxidation (carbonaceous biochemical oxygen demand stabilization)	+50 to +200
Polyphosphate accumulation	+50 to +250
Nitrification	+150 to +350
Denitrification	-50 to +50
Polyphosphate release	-40 to -175
Acid formation	-40 to -200
Sulfide formation	-50 to -250
Methane formation	-200 to -400

Courtesy of WET

Courtesy of Hach

Total Suspended Solids

- Many Optical Instruments (Visible/ Near-IR) on the Market
- Typically In-situ, bypass available
- Ensure Correct Measuring Range is Selected (Pathlength)

Courtesy of Hach

Flow

- Different types of flow
 measurement devices
- Different devices are suitable for different types of installations
- Always consider the end use of the data (e.g. chemical pacing, simple trending, regulatory reporting)

Courtesy of Rosemont

Courtesy of Siemens

Ammonia

- In-situ ISE Probes
 - Accuracy/performance varies
 - Require calibration
 - Replacement of electrodes
- Cabinet-type analyzers
 - Accurate
 - Sample filtration and delivery challenging in WWTPs
 - Consumables replacement

Courtesy of WTW

Courtesy of ChemScan

Nitrate (Nitrite?)

- In-situ ISE Probes
 - Many MFRs performance varies
 - Often coupled with ammonia ISE
 - Calibration/replacement of electrodes
- In-situ UV
 - Utilizes absorbance from 200 220 nm
 - Many MFRs
 - Low O&M requirements/costs
- Cabinet-Type Analyzer
 - Pump/filter
 - Reagents
 - Accurate

Image Courtesy of WTW

Image Courtesy of s::can

Phosphorous

- Cabinet-Type Analyzer
 - Pump/filter
 - Reagents
 - Accurate
 - Many MFRs, costs vary

Courtesy of ChemScan

Case Study #1

Energy and Chemical Savings Through Ammonia-Based DO Control

- Ammonia-based DO control
- Modeled potential savings in energy/chemical

- Operator selects effluent ammonia setpoint
- Ammonia > setpoint, DO increased
- Ammonia < setpoint, DO decreased

Case Study #1 – Process Model

 Process modeling concluded that process air (6%) and carbon (20%) savings <u>were</u> possible using an ammonia-based DO control scheme

	DO Setpoint C	ontrol	DO/NH3 Control		
Date	Total Nitrogen (Effluent)	Avg Daily SCFM	Total Nitrogen (Effluent)	Avg Daily SCFM	
7/1/2013	10.6	10,400	10.6	9,900	
7/2/2013	10.3	10,300	10.0	9,600	
7/3/2013	10.0	10,300	9.8	9,800	
7/4/2013	7.8	9,500	7.4	8,800	
7/5/2013	12.2	11,500	12.4	10,800	
7/6/2013	6.3	9,500	6.0	8,700	
7/7/2013	8.1	10,900	8.4	10,400	
Average	9.3	10,300	9.2	9,700	

Case Study #1 – Process Model

 The ammonia-based DO control scheme relies on accurate ammonia measurement below 1 mg/L (NH3-N)

Case Study #1 – Implementation

- The ammonia sensors located on site were evaluated and could not measure below 1 mg/L with consistent accuracy.
- When automated operations using the ammonia sensors were attempted, process upsets resulted (loss of nitrification)
- The sensors must be reliable at the level needed for enhanced control

Case Study #1 – Details

- If NH3-N < 0.75 mg/L
 - DO setpoint in Zone 2, 3 and 4 = 0.3 mg/L
- If NH3-N > 1.0 mg/L
 - DO setpoint in Zone 2, 3 and 4 = 2.0 mg/L

Case Study #1 – Details

Case Study #1 – Details

Case Study #1 – Next Steps

Optimizing Carbon Dosing

- Five (5) WWTPs where supplemental carbon added to enhance denitrification
- Utilization of nitrate instrumentation to optimize carbon addition rate
- Evaluated different sensor locations and control schemes to determine best ROI (BioWin)

- NH3-N load varies significantly throughout the day
- COD/NH3-N ratio also varies throughout the day

Case Study #2 – Dosing Strategy 1

Flow-paced carbon addition based on influent flow rate

Anoxic Zone Pre-Anoxic Zone Aerobic Zone

Case Study #2 – Dosing Strategy 2

 Mass-paced carbon addition based on ratio of COD to Nitrate/Nitrite entering the head of Pass D

Case Study #2 – Dosing Strategy 3

 Feedback trim based on the Nitrate/Nitrite concentration at the end of the Pass D anoxic zone

Case Study #2 – Summary of Results

 Plant A shows that the more sophisticated strategy results in greater savings

	Strategy 1		Strategy 2		Strategy 3		% Carbon Savings over Strategy 1	
	Eff TN	Carbon	Eff TN	Carbon	Eff TN	Carbon	Strategy 2	Strategy 3
	mg/L	gpd	mg/L	gpd	mg/L	gpd		
Plant A	8.9	6,620	8.8	6,270	8.9	5,870	5.3%	11.4%
Plant B	6.8	2,190	6.8	1,940	n/a		11.3%	n/a
Plant C	8.3	7,910	8.2	7,850	n/a		0.8%	n/a
Plant D	5.2	820	5.2	760	n/a		7.6%	n/a
Plant E	5.9	4,090	6.0	3,910	n/a		4.3%	n/a

Conclusions

- Instrumentation has clear benefits for advanced WWTP processes
- Understanding goals and considerations up front is essential for success
- Process modeling can help understand the concrete benefits of a control scheme and help the decision-making process

Questions?

HAZEN AND SAWYER

Environmental Engineers & Scientists