On Demand Pump Condition Assessment and Optimization

NEWEA 2015 Annual Conference Session 15 Instrumentation and Automation 9am Tuesday January 27th, 2015

Presented by Marc Buchwald Authored by Jeff M. Miller, PE, ENV SP and Sam Lauffenburger

SPECIFIC ENERGY SPECIFIC ENERGY

About the Presenter Marc Buchwald

Marc Buchwald is a regional Business Development Manager for Schneider Electric's Water Wastewater Competency Center. Marc graduated from NJIT with a BS in Industrial Engineering and brings 40+ years of experience helping clients with Electrical and Automation solutions. He is an active member in NJAWWA (technical program committee), NYAWWA, NJWEA, NYWEA, LIWC, AEA NJ, NEWEA, and NEAWWA.

Typical Pump Life Cycle Cost

Source: "Reducing Life Cycle Cost By Energy Saving in Pump Systems." Bower, John R., Ingersoll-Dresser Pumps.

Typical Pump Life Cycle Cost

Typical pump life-cycle cost profile (Courtesy of Hydraulic Institute and Pump Systems Matter)

Lowering Pump Life Cycle Costs

Typical pump life-cycle cost profile (Courtesy of Hydraulic Institute and Pump Systems Matter)

Affinity Laws for Pumps

Simplified Laws

- Non compressible fluid (water)
- Centrifugal type pump
- Flow is proportional to speed of the pump
- Power is proportional to the (speed)³ of the pump

Affinity Laws for Pumps

Variable Speed vs. Throttled

> Energy saved with variable vs. fixed speed drives at 100% and 60% flow, according to the static head and pump sizing. The operating point is represented as the intersection of the pump curve with the system curve

Affinity Laws for Pumps

BEP : Best Efficiency_ Point

Comparison of two efficiency scenarios at different flow rates: 8 to 9% more efficient with variable speed drives at 60% flow

Putting Laws into Practice

What Would be the Best Method to Operate and Manage a Pump Station?

Pump Condition Assessment

Measure pumps' capacity and efficiency with automated pump tests

Dynamic Pump Optimization

Continually adjust pump station to changing pump and system conditions to operate at peak efficiency

What Operators See – 5 Identical Pumps

The Reality – Pumps are Hardly Identical

Preferred Operating Range

Effect of Pump Impeller Wear

Effect of Pump Impeller Wear

Effect of Pump Impeller Wear

PHI Pump Health Tracking

- Intelligently target pumps for repair
- Opens the door for advanced metrics and advanced optimization
- See pump operating points in real time on up-to-date pump curves

Pump Condition Assessments

Annual Audits

- Expensive
- Not repeatable
- Often not actionable
- No financial impact analysis
- Not available ad hoc

On Demand Condition Assessment

Asset Management

- Perform regular automated
 pump tests
- Track pump operation in real time on pump curves
- Generate monthly operating reports
- Identify underperforming pumps for repair

Pump Health Index (PHI)

PHI represents current peak efficiency versus factory peak efficiency.

Schedule repairs for pumps with PHI < 85

Efficiency (%)

Prioritize Repairs with Financial Metrics

Input:

- Replacement Cost
- Cost of Electricity
- Expected Pump Life
- Interest Rate

Recommended Repairs					
		Energy Savings:	\$4498/yr		
	Hwy195 Pump4	Total Cost	\$25000		
1		Payback Period:	5.6 yrs		
		Net Present Value:	\$13367		
		ROI:	53.47%		

Prioritize Repairs with Financial Metrics

Pump Repair Recommendations:								
Top Recommended Re	pairs:							
Pump1 TU/S Pump Station	^{ROI} 233.7%	Present Value \$47,737	Payback Period 2.9 years					
Pump3 TU Pump Station	^{ROI} 112.9%	Present Value \$28,214	Payback Period 5.6 years					
Pump Name	Station Name	R	epair Present Value	ROI	Payback Period			
Pump1	TU/S Pump	Station	\$47,737	233.7%	2.9 years			
Pump3	TU Pump St	ation	\$28,214	112.9%	5.6 years			
Pump1	TU Pump St	ation	\$24,672	98.9%	6.1 years			
Pump3	TU/S Pump	Station	\$21,050	87.8%	6.5 years			

What Would be the Best Method to Operate and Manage a Pump Station?

Pump Condition Assessment

Measure pumps' capacity and efficiency with with automated pump tests

Dynamic Pump Optimization

Continually adjust pump station to changing pump and system conditions to operate at peak efficiency

Pump Station Energy Consumption

Specific Energy vs. Flow

Dynamic Pump Optimization Pump Station with 5 Pumps: Possible Operating Ranges

Best Solution | Best Pump Ranges | Outside Preferred Operating Range | Possible Pump Operation

Dynamic Pump Optimization Pump Station with 5 Pumps: Best Pump Ranges

Dynamic Pump Optimization Pump Station with 5 Pumps: Best Pump Ranges

Schneider Electric | Specific Energy | Jeff M. Miller and Sam Lauffenburger | NE WEA Annual Conference | Session 15 Tuesday 9am January 27th, 2015

Dynamic Pump Optimization Pump Station with 5 Pumps: Best Solution

Schneider Electric | Specific Energy | Jeff M. Miller and Sam Lauffenburger | NE WEA Annual Conference | Session 15 Tuesday 9am January 27th, 2015

Continuous Optimization

Dynamic Pump Optimization

- Continually operate at peak
 energy efficiency
- Operate within each pump's Preferred Operating Range
- Reduce leaks with Digital Transient Control
- Peak demand and time-of-day energy management

Typical Project Requirements

- System
 - Centrifugal Pumps
- Control Hardware
 - VFD Pump Motor Controllers (optimal)
 - PLC Pump Controller (existing or new)
 - Pump Assessment and Optimizing Panel

Instrumentation

- Suction Pressure or Wetwell Level
- Discharge Pressure
- Flow
- Power per Pump

Typical Physical Installation

- Install Pump Assessment and Optimization Panel
- Install conduit connections from panel to PLC cabinet (120 VAC power and communications cable)
- Mount external cellular antenna (if necessary)
- Configure PLC to receive panel pump operation and speed recommendations
- Configure PLC to allow panel to read required PLC registers
- Configure HMI to enable operators to toggle optimization mode and display Specific Energy data

Case Study – Camp Swift High Service Pump Station

- 4 "Identical" Pumps 200 HP
- Dramatically improved impeller life
- Energy Savings 18%

Specific Energy (KW-h/MG) Head (feet) Flow (gpm)

97.3

32.4

16.2

Flow (gpm)

Case Study – S8 Water Well

- 250 HP Well Pump
- Energy Savings 30%

SH195 Pump Station

- 5 "identical" pumps 1150 HP
- Discovered lead pump was significantly worn
- Energy Savings 25%

Questions?

Marc Buchwald

Business Development Manager Water Wastewater Competency Center

2001 Route 46, Suite 402 Parsippany, NJ 07054 Mobile: 201.404.3514 Marc.Buchwald@Schneider-Electric.com www.schneider-electric.com

Jeff M. Miller, PE, ENV SP

Schneider Gelectric Solutions Architect Water Wastewater Competency Center

8001 Knightdale Blvd. Knightdale, NC 27545-9023 Office: 919.266.8360 | Mobile: 919.824.9114 JeffM.Miller@Schneider-Electric.com www.schneider-electric.com

Questions?

Sam Lauffenburger Software Engineer

1978 South Austin Ave. Georgetown, TX 78626

Sam.Lauffenburger@specificenergy.com 512.930.9415

www.specificenergy.com

Jeff M. Miller, PE, ENV SP

Solutions Architect Water Wastewater Competency Center

8001 Knightdale Blvd. Knightdale, NC 27545-9023 Office: 919.266.8360 | Mobile: 919.824.9114 JeffM.Miller@Schneider-Electric.com www.schneider-electric.com