

Hands on State Point Training Illuminates Clarifier Operation

2015 NEWEA Annual Conference Session 13 – January 27, 2015

Paul Dombrowski, P.E., BCEE Senior Technical Leader Woodard & Curran, Inc.

Acknowledgments

- Many individuals and organizations contributed to the concept and delivery of this training:
 - Dick Darling ME DEP
 - Scott Firmin Portland Water District (PWD)
 - Leeann Hanson JETCC
 - Steve Sloan Portland Water District
 - PWD East End WWTP Staff
 - Al Jellison City of Bangor
 - Bangor WWTP Staff
 - Numerous operators who served as trainers

Training Overview

Hands on training combined with class room instruction

Step 1 – Conduct a "train the trainer" session

Step 2 – Conduct training with the assistance of a

team of trainers

Class Agenda

- Review secondary clarifier operating concepts
- Learn how to use the State Point Approach
- Conduct column testing to develop plant-specific data
 - 4 Teams with Trainers

- Illustrate clarifier operating scenarios using Dynamic Modeling
- Review how raw data is used to develop Gravity Flux Curve
- Develop Gravity Flux Curve for the data collected and examine actual operating scenarios

What is State Point Analysis?

- State Point Analysis:
- Graphical solids mass balance of the secondary clarifiers
- Dependent on:
 - Physical facilities
 - Influent flow
 - Sludge settling characteristics
- Can be used to determine:
 - Allowable MLSS to the clarifiers
 - Minimum RAS rate
 - The capacity of the clarifiers

State Point Analysis - Graphical Approach - Two 60' Diameter Circular Clarifiers

Gravity Flux Equation

Gravity Solids Flux = (V_oXe^{-kX})/16

- Vo = Initial Settling Velocity (ft/day)
- X = MLSS Concentration (g/L)
- e = Exponential Function
- k = empirical settling parameter (L/g)

The Gravity Solids Flux defines the zone settling rate in the clarifier

Test Equipment

4 Column Arrangement

Test Procedure

- Measure MLSS and SVI
- Create sample dilutions from 1,000 10,000 mg/L
- Thoroughly mix sample
- Pour sample into column using funnel
- Start timer when fill completed
- Mix column contents
- Measure interface level at 1 minute intervals
 - Low MLSS concentrations will settle faster
 - High MLSS concentrations will settle slower

Biddeford WWTP Batch Settling Tests - 12/5/2013 - Raw Data

Biddeford WWTP Batch Settling Data - 12/5/13 - Culled Data

Biddeford WWTP Batch Settling Data - 12/5/13 - Culled Data

Biddeford Observed Settling Velocity (ft/day) on 12/5/2013

State Point Analysis - Two-80' Clarifiers - Biddeford WWTP - 12/5/13

Conclusions

- Hands on aspect of the course significantly helped participants:
 - Grasp both theory and math of approach
 - Understand how solids loading rate can be a limiting factor in clarifier operation
- Use of trainers significantly helped students by providing continuous input and feedback during testing
- Limitations of small, unstirred columns was evident

Thanks to all the Coordinators **Plant Staff Trainers Participants**

