



# Pump Station Condition Assessments (A Proven and Defensible Approach)







#### **Outline**

- Background and Drivers
- Methods
  - Typical Findings (non BWSC specific)
  - Prioritization and Grouping (non BWSC specific)
  - Next Steps

## **Project Drivers**

- Commission funds and maintains CIP
- CIP includes prioritized list of repairs and upgrades
- Independent and defensible review

#### Background





## Section 2: Methods



#### **Project Methods**



Credible, objective data



Proven prioritization proce





Defensible list of prioritized projects

#### BWSC: Step-by-Step Procedure

- 1. Historical Data Review
- 2.Computerized Database / Tablet
- 3. Consequence of Failure Review
- 4. Field Visits
  - Field assessment (Condition and Performance)
  - Field Tests
- 5.Asset Criticality "model" / Prioritization
- 6.Projects/ Recommendations

#### Step 1: Data Review

- O&M Manuals / Reports
- As-built Drawings
- Site visits / traffic review
- Interviews with Operators

Existing Photos







#### Step 2: Customize Database / Tablet



# Step 3a: <u>Consequence</u> of Failure (Asset Type) – Owner Input

- ✓ Civil/Site Assets
- ✓ Buildings and Structures
- Pump, Motors, and Equipment
- ✓ Piping and Valves
- ✓ HVAC
- Electrical Systems, VFDs
- ✓ Standby Power Systems
- ✓ Instrumentation and Control Systems



5: High Consequence

## Step 3b: Consequence of Failure (Station) – Owner Input

- **✓ UPPS**
- ✓ Austin
- Commonweal th
- ✓ Sullivan
- ✓ Symphony
- ✓ Public Alley
- ✓ Summer
- ✓ Trilling Way
- Port Norfolk
- **V**<sub>■</sub>Notting Hill

**Parameters** (weighting)

**Parameter** Score

**Station** Score





Station Flow (weight =0.6)

Critical Customers (weight =1.0)

Sensitive Waters (weight =0.8)

Difficulty of Repair (weight =0.4)

Growth Area (weight =0.3)

Response Time (weight =0.8)

etc...

etc...

Consequence

#### Step 4a: Field Visits

## Team scoring for each asset

#### Condition

- 1 Excellent
- Slight visible degradation
- Visible degradation
- Integrity of component moderately compromised
- Integrity of component severely compromised



# Step 4b: Field Visits Team scoring for each asset

#### Performance

- 1 Component functioning as intended
- 2 In-service, but higher than expected O&M
- 3 In-service, but function is impaired
- 4 In-service, but function is highly impaired
- 5 Component is not functioning as intended



Age Adjustment

0- 50% of useful life → No adjustment 50-75% of useful life → Performance (+1) 75-100% of useful life → Performance (+2)

# Step 4c: Field Visit Condition and Performance Regions

Performance Ranking



Safety, Reliability, Operability

# Section 3: Typical Findings (non-BWSC specific)



### Summary of Common Field Test Findings

 Capacity / Drawdown Tests

2. Data Logger

3. Vibration



## Summary of Common Electrical and HVAC Findings

- Local HMI / local operator interface
- Egress lighting
- NFPA 820 compliance / Intrinsically safe devices / ventilation
- Surge suppression
- Gas monitoring / alarms
- Secondary pump controls
- Smoke vs. fire detectors

Summary of Common Hydraulic / Mechanical Findings

Station Bypass Potential

Equipment Assess Removal





#### Summary of Common Structural Findings

- Hatches
- Ladders
- CrackedWalls /Structures



#### Station XYZ

Total Number of Assets Reviewed = 96



#### **Highest Scoring Assets**

| Asset         | Asset Type | Comments                             | Asset Region |
|---------------|------------|--------------------------------------|--------------|
| Roof          | Structural | Damage membrane, evidence of leakage | 4            |
| Pump 2        | Pumps      | High vibration, leaking seal         | 4            |
| Control Panel | Electrical | No local HMI                         | 3            |
| Exhaust Fan   | HVAC       | Noise, No gas monitoring             | 2            |

# Step 5a: Criticality Review "Model" (Criticality of assets)



Likelihood of failure

# Section 4: Prioritization / Grouping



#### **Asset Priority**

#### **Asset Prioritization Summary**

| Asset | Pri | ori | ty |
|-------|-----|-----|----|
|       |     |     |    |

Priority 1 (0-2 years)

Priority 2 (2-5 years)

**Priority 3** 

Priority 4

#### Percentile

90'th-% to 100'th-%

70'th-% to 90'th-%

50'th % to 70'th-%

0-% to 50'th-%

#### High Criticality Asset and Projects



#### Overall Summary of Criticality Prioritization

#### **Summary Asset Prioritization Summary and Costs**

| Priority   | Percentile  | Assets<br>Count | Total Cost (\$)  |
|------------|-------------|-----------------|------------------|
| Priority 1 | 90% to 100% | 39              | \$XXX,XXX,XXX    |
| Priority 2 | 70% to 90%  | 71              | \$XXX,XXX,XXX    |
| Priority 3 | 50% to 70%  | 102             | No cost estimate |
| Priority 4 | 0% to 50%   | 174             | No cost estimate |

## Prioritize CIP expenditures to maximize criticality reduction

Asset Region

-ikekRbbd of Failure



Consequence of Failure
Station and Asset Type Score

#### Grouping of Projects By Station

| Priority Summary by Pump Station |             |           |             |           |           |
|----------------------------------|-------------|-----------|-------------|-----------|-----------|
| Station                          | Priority 1  |           | Priority 2  |           | Total     |
|                                  | Asset Count | Cost (\$) | Asset Count | Cost (\$) | Cost (\$) |
| Station 1                        | 3           |           | 13          |           |           |
| Station 2                        | 4           |           | 9           |           |           |
| Station 3                        | 9           |           | 1           |           |           |
| Station 4                        |             |           | 4           |           |           |
| Station 5                        |             |           | 4           |           |           |
| Station 6                        | 4           |           |             |           |           |
| Station 7                        | 1           |           | 2           |           |           |
| Station 8                        |             |           | 2           |           |           |
| Station 9                        |             |           | 3           |           |           |
| Station 10                       |             |           | 3           |           |           |
| Grand Total Brown and Caldwell   | 39          |           | 71          |           |           |

### Grouping of Projects by Asset Type

|                         | Priority S  | Summary by | Asset Type  |           |                    |
|-------------------------|-------------|------------|-------------|-----------|--------------------|
| Asset Type              | Priority 1  |            | Priority 2  |           | Total Cost         |
|                         | Asset Count | Cost (\$)  | Asset Count | Cost (\$) | Total Cost<br>(\$) |
| Building                | 2           |            | 6           |           |                    |
| Centrifugal Pumps       | 5           |            | 5           |           |                    |
| Cranes                  |             |            | 2           |           |                    |
| Electrical Infra.       | 6           |            | 10          |           |                    |
| <b>Electrical Power</b> | 3           |            | 2           |           |                    |
| Generators              | 1           |            | 2           |           |                    |
| HVAC                    | 1           |            | 3           |           |                    |
| Instrumentation         | 3           |            | 4           |           |                    |
| Motors                  | 3           |            |             |           |                    |
| Odor Control            | 1           |            |             |           |                    |
| Piping                  |             |            | 22          |           |                    |
| SCADA                   | 2           |            | 4           |           |                    |
| Submersible Pumps       | 7           |            | 2           |           |                    |
| Wetwell                 | 5           |            | 8           |           |                    |
| VFD                     |             |            | 1           |           |                    |
| Total                   | 39          |            | 71          |           |                    |

# Prioritize and Group expenditures to maximize criticality reduction



Consequence of Failure Station and Asset Type

## Section 5: Next Steps



#### Next Steps

- Reviewing higher priority projects with BWSC staff
- Further grouping of project by station
- Further grouping of projects by asset type

#### Summary

Step 1
Proper planning
and input

Step 2 Field time Step 3
Defensible, prioritized improvements







#### **TOOLS**

 Electronic condition assessment forms

- Computer tablet (C&P Regions)
- Data loggers
- Vibration

 Criticality prioritization model

## Questions?

