Assessing Performance of Advanced Rainwater Harvesting Systems for Mitigation of CSOs and Continuous Monitoring of PFC Asphalt Overlay

Research by:

Andrea Braga, PE, CPESC Erica Tillinghast, CPESC Riana Kernan Rebecca Stack Stephen Reiling, CFM Marcus Quigley, PE, CPESC

Outline

Background

- Pilot Sites
- Advanced Rainwater Harvesting

Advanced RH Results

Wet Weather Flow Reduction

Continuous PFC Monitoring

- Flow Rate
- Temperature

Conclusions

Next Steps

Background

- D.C. conveys stormwater through two types of systems
 - Combined sewer systems (1/3 of D.C.)
 - MS4 (2/3 of D.C.)

Problem:

- Combined Sewer: Limited capacity of existing infrastructure
- MS4: Discharge at highly erosive flows and elevated pollutant loads

Background

Solution:

- Advanced rainwater harvesting systems
- Permeable friction course asphalt overlay

Location:

- Engine House #3: Combined Sewer
- Engine House #25: MS4

Advanced Rainwater Harvesting: Active controls based on probability of precipitation

Real-time Monitoring and Control

- Primary Goals:
 - Reduce discharge to combined sewer/MS4 during rain events
 - Discharge stored water <u>prior</u> to forecast storm event
 - Continuous monitoring of cisterns (water level/turbidity)
 - Continuous monitoring of PFC and asphalt (flow rate/temp.)
- System Benefits:

Minimize Runoff Reduce potable water usage

Minimal Maintenance Remote
Monitoring &
Programming

Real-time Monitoring and Control

- Cistern Logic
 - Predict storm volumes 48 hours in advance
 - Drain cisterns to accommodate predicted storm volume
 - Can drain to as low as the minimum level of 1.8" (79 gal)
 - Drain valve open if cistern level greater than maximum + 8" (87"; 3500 gal)

Advanced Rainwater Harvesting Results

	Sum of Rainfall (in)	Sum of Cistern Flow to MS4/CS (gal)	Sum of Wet Weather Flow to MS4/CS (gal)	Sum of On- Site Reuse (gal)	Wet Weather Flow Reduction
Engine House 3	29.6	21,200	226	1,260	98%
Engine House 25	32.5	44,900	799	12,120	98%

Monitoring Period: 3/28/2014 – 12/31/2014

Permeable Friction Course Flow Rates: EH #3

Permeable Friction Course Flow Rates: EH #25

Permeable Friction Course Temp: EH #3

Permeable Friction Course Temp: EH #25

22

Permeable Friction Course Temp: No Rainfall

EH: 25

Conclusions and Next Steps

- Reduced cistern discharges to combine sewers/MS4 during rain events
- Preliminary results indicate little differences in surface temperature between PFC and asphalt
- Preliminary results indicate lower peak flow rates in PFC than asphalt

Next Steps:

- Turbidity monitoring within cisterns (installed 12/2014)
- Pollutant monitoring of asphalt, PFC, and cisterns
- Complete data analysis for next two year monitoring period
- Compare active systems to passive systems in D.C.

